skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Larsen, Kasper Green"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proves the first super-logarithmic lower bounds on the cell probe complexity of dynamic boolean (a.k.a. decision) data structure problems, a long-standing milestone in data structure lower bounds. We introduce a new approach and use it to prove a Ω(log1.5 n) lower bound on the operational time of a wide range of boolean data structure problems, most notably, on the query time of dynamic range counting over F2. Proving an ω(lgn) lower bound for this problem was explicitly posed as one of five important open problems in the late Mihai Pǎtraşcu’s obituary . This result also implies the first ω(lgn) lower bound for the classical 2D range counting problem, one of the most fundamental data structure problems in computational geometry and spatial databases. We derive similar lower bounds for boolean versions of dynamic polynomial evaluation and 2D rectangle stabbing, and for the (non-boolean) problems of range selection and range median. Our technical centerpiece is a new way of “weakly” simulating dynamic data structures using efficient one-way communication protocols with small advantage over random guessing. This simulation involves a surprising excursion to low-degree (Chebyshev) polynomials which may be of independent interest, and offers an entirely new algorithmic angle on the “cell sampling” method of Panigrahy et al. 
    more » « less